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Abstract
We studied the effects of the confinement geometry and of external electric field
on the electron dynamics of spherical and cylindrical double quantum dots.
With an effective-mass approach, we found eigenenergies and envelope wave
functions for finite confinement numerically. Using these energy states, we
studied the response of the system to electric field pulses of different intensities,
by calculating the density-matrix evolution in the high-delocalization regime,
considering electron–electron and electron–acoustic phonon interactions, as a
function of external DC electric field in the coupling direction. We obtained
suitable conditions for coherent emission from cylindrically shaped dots, while
in the case of spherically shaped dots, the scattering process is faster than the
quantum beat oscillation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Double-quantum-dot arrays are good candidates to be useful in the implementation of
nanodevices both for optoelectronics and quantum computation [1, 2]. Tunability of
eigenenergies and long lifetimes of coherent states are the main advantages of such
systems [3, 4]. We explore the possibility of using double dots as emitters of coherent
electromagnetic radiation, since the formation of molecular states in multi-dot systems by
hybridization of individual-dot states gives rise to energy spectra with closely split levels where
quantum-beat oscillations may be expected [5–8].

The main obstacles to obtaining coherent emission from quantum dots are the scattering by
carrier–carrier and carrier–phonon interactions. Calculations and measurements of decoherence
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Table 1. Material parameters [4, 32].

V (meV) m∗ matrix m∗ dot D (meV) cs (nm ns−1) K ρ (g cm−3) h14 (V nm−1) ε

500 0.0962 me 0.063 me 8600 5040.4 0.58 4.696 1.38 12.9

times in single quantum dots by electron–phonon interactions suggest that the lifetime of
coherent states in these systems would be long enough to exceed the period of beating for
interferences between energetically close states [9–11]. Electron–electron interactions have
much larger scattering rates than the electron–phonon interactions when the electrons involved
in the interaction are confined on the same dot [12], but this obstacle can be removed by
controlling the quantum-dot carrier population, taking advantage of the fact that today, it is
actually possible to have one-electron dots [13, 14].

On the other hand, the tunability of states, a highly desirable feature for applications, has
been reached in double quantum dots using electrical bias as the control parameter, with the
prediction of anticrossing regions or a high delocalization regime (HDR) by reaching conditions
when there exists a high interaction between individual-dot states [15, 16]. Such a coupling
between dots is a direct consequence of electronic tunneling through the interfaces of the
confined systems, which is due to the finiteness of the confinement potential. That is the reason
why we are interested in studying finite confinements while the most of the works on coupled
dots are made considering infinite confinement [17–20]. On the other hand, extensive studies
on quantum-dot molecules have been done for entanglement and luminescence, involving
interband or several-electron interactions [21–23], while there are many fewer studies on
intraband phenomena despite the large applicability of such a physics for devices [24–26] in
which the complication of the carrier–carrier interaction is removed.

Using a dynamical one-electron model for perturbative scattering coupling [27], we studied
here the most symmetrical geometries, which are spheres and cylinders. The degeneracy
of the single-dot states of the shapes considered implies the involvement of several excited
levels. In this work we dealt with the first five confined energy levels of the whole double-dot
system. Although cylindrical and spherical dots have been barely reported in the literature as
an experimental achievement [28, 29], such geometries are very fundamental and important in
order to understand theoretically the physics of confined systems [30, 31].

In the first section we present the eigenenergies and envelope wave functions of single
and double dots in each of the geometries studied. After that, we calculate the decay rates by
electron–electron and electron–phonon interaction at room temperature, in order to obtain the
density matrix evolution of the system after the application of an external pulse and to evaluate
the total dipole moment, looking for the viability of coherent emission from the double-dot
systems.

To the best of our knowledge, this is the first dynamical approximation for double quantum
dots with finite confinement comparing the shape effects and using computed decoherence
times.

2. Energy states and coupling between dots

The systems we focus on are pairs of quantum dots of different size, close enough to be
electronically coupled, which is equivalent to having their individual states hybridized. They
are chosen as islands of GaAs embedded in an Al0.4Ga0.6As matrix. Material parameters are
as in table 1. The confinement potential is modeled as a finite potential step. We consider
spherical and cylindrical geometries. The case with cylindrical shape has two options: stacked
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or lateral coupling. These two configurations are expected to have different behavior since, in
the latter one, the axial symmetry is broken.

We found the energy levels by solving numerically the BenDaniel-Duke equation[−h̄2

2
∇ ·

(
1

m∗(x, y, z)
∇

)
+ V (x, y, z)

]
�(x, y, z) = E�(x, y, z), (1)

where m∗ is the electron effective mass, V is the offset in the conduction band of the two
materials, e is the elemental charge, � is the one-electron envelope function and E is the
eigenenergy. This model is valid for the conduction states of Alx Ga1−x As since the band mixing
is small because of its wide band gap [33].

In this report, we work with the first two energy values of individual spherical dots and
the first three of cylindrical dots. The individual spherical dots have a non-degenerate ground
eigenenergy and a three-fold degenerate first excited eigenenergy. The individual cylindrical
dots also have a non-degenerate ground level and first excited eigenenergy, but a two-fold
degenerate second excited energy value close to the former one. So, in both cases, to work with
coupled dots with these levels hybridized it is necessary to consider a five-level system: one
associated with the smaller dot and four with the bigger one. Figures 1(a)–(e) show the density
of probability of the studied levels of a single dot for both considered geometries. Figure 1(f)
shows the change of the energy values with the change of the size of the dots. In this work,
in order to maintain geometric proportion, we use a length twice the radius for cylindrical dots
guaranteeing regular cylinders, far away from the disk or wire limits.

For double dots we solved equation (1) with the term eFx added to the Hamiltonian
nonperturbatively, where F is the external bias field and x the coordinate in the direction of
the coupling between dots [16]. We found the first five eigenenergies as a function of the
electric field for a pair of dots where the size relation allows tuning the HDR with low fields,
since the ground state of the smaller dot is close to resonance with the first excited states of
the larger dot in spherical dots or with the first and second excited states of the larger dot in
cylindrical dots. A volume ratio of ∼4.3 between the dots to reach the HDR when the smaller
dots are around 300 nm3 was determined, then we worked with dots of radius 4 nm and 6.5 nm
respectively, both for spherical and cylindrical dots. We study three cases in this report: case 1:
double spherical dots; case 2: laterally coupled double cylindrical dots; and case 3: vertically
coupled double cylindrical dots. In all these three cases, the ground state of the double-dot
system is basically the same as the ground state of the individual larger dots.

For case 1, the ground state of the smaller dot is hybridized with one of the three states of
the larger dot whose energy value is the first excited state (which is three-fold degenerated),4

while for cases 2 and 3, depending on the magnitude of the bias field, the ground state of the
smaller dot is hybridized with the first excited state or with one of the two states of the larger
dot whose energy value is the second excited state, which is two-fold degenerated.5

Figures 2(a)–(c) show the considered excited energy values of the double-dot systems as
a function of the electrical bias for cases 1, 2 and 3, respectively. In these figures anticrossing
regions are observed as evidences of the coupling between states. Such couplings clear
the degeneration of the first excited level for spherical dots and of the second excited level
for cylindrical dots. Figures 2(d)–(f) show the density of probability for cases 1, 2 and 3,
respectively, in the HDR. It is clear that total delocalization of the electron along the two-dot
system occurs [16, 27].

4 For this first excited level there are three degenerated states, one along each axis. The state hybridized with the
ground state of the smaller dot is the one whose symmetry axis is the same as the coupling direction.
5 For this second excited level there are two degenerated states, one along each of two axes which are perpendicular
to the cylinder axis. The state hybridized with the ground state of the smaller dot is the one whose symmetry axis is
the same as the coupling direction for a laterally coupled dot.
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Figure 1. Electronic density of probability for spherical quantum dots: (a) ground state, (b) first
excited state (three-fold degenerated); and cylindrical quantum dots: (c) ground state, (d) first
excited state, (e) second excited state (two-fold degenerated). (f) Eigenenergies changing with the
size of the dots (solid: spherical dots, dashed: cylindrical dots).

3. Electron–acoustic-phonon interaction

We calculated the decay rates for transitions induced by phonons of long wavelength. As shown
in figures 2(a)–(c), the transition energies between excited levels do not include values close to
the longitudinal optical phonon (∼36 meV) [4]. It has been discussed that the polar coupling in
zero-dimensional (0D) structures is relevant [34, 35], but the experimental evidences show that
the interaction between two states is appreciable only close to the crossing region between the
lower state with the phonon and the upper one without the phonon [36, 37]. As a consequence,
we considered only electron–acoustic-phonon interactions.
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Figure 2. Considered excited energy values of double-dot systems as a function of the bias field for
(the fixed distance between the centers of the dots is 13.5 nm): (a) case 1 (spherical double quantum
dots), (b) case 2 (laterally coupled double cylindrical quantum dots) and (c) case 3 (vertically
coupled double cylindrical quantum dots); the dashed vertical lines indicate the anticrossing
considered in each case. Electronic density of probability of the first delocalized state for: (d) case
1 (F = 0.22 mV nm−1), (e) case 2 (F = 0.125 mV nm−1), and (f) case 3 (F = 1.25 mV nm−1).

In this and in the next section, the decay rates between an initial state (i) and a final state
(f) were calculated using the Fermi golden rule (FGR) approximation by solving numerically

�if = 2π

h̄
|Hif|2 δ(E), (2)

where �if is the scattering rate for transition between the states i and f, δ(E) imposes the
energy conservation in the transition and |Hif| is the matrix element of the interaction electron–
phonon by deformation potential (e–p-D), electron–phonon by piezoelectric potential (e–p-P)
or electron–electron (e–e). The use of the FGR approximation has been questioned in the cases
when the coupling is strong [38]; however, for the kind of system we are studying here, such
an approximation is justified for times around picoseconds or longer [39, 40].

We calculated decay rates by deformation and piezoelectric potential interactions using a
Fröhlich Hamiltonian
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H e−p-D =
∑

�q
BD

q ρ(�q)(a�q + a†
−�q),

H e−p-P =
∑

�q
BP

q ρ(�q)(a�q + a†
−�q),

(3)

where the a†(a) are the bosonic creation (annihilation) operators, �q is the transferred
momentum, ρ(�q) is the electronic density operator, and BD

q (BP
q ) is the coefficient of the

deformation (piezoelectric) interaction according to [41]:

BD
q = D

(
h̄

2McS|�q|
) 1

2 |�q| , BP
q = BD

q

D |�q| (eh14)
2

(
12

35
+ 16

35κ

)
, (4)

where D is the deformation potential, M is the mass of the whole sample, cS is the longitudinal
speed of sound in the material, h14 is the only non-vanishing piezoelectric constant, κ is
the ratio between the transverse and longitudinal sound velocity, BD

q is the deformation
potential interaction coefficient, and BP

q is the piezoelectric potential interaction coefficient
after considering the average longitudinal and transverse contributions.

Introducing equations (4) in (3) we obtain the following final expressions for the
deformation and piezoelectric potentials, respectively:

�
e−pD
if = Ti f,q0 D2q3

0 (nT,q0 + 1)

2h̄c2
Sρ(2π)2

, (5a)

�
e−pP
if = Ti f,q0 q0(nT,q0 + 1)e2(h14)

2

2h̄c2
Sρ(2π)2

(
12

35
+ 16

35κ

)
, (5b)

Tif,q0 =
∫ 2π

0

∫ π

0
(Iif,�q0)

2 sin(θ) dθ dϕ,

Iif,�q0 =
∫

All Space
ei�q0·�r� ∗f (�r)�i(�r) d�r,

with transferred momentum q0 = (Ei − Ef)/h̄cS; ρ is the material density, and nT,q0 is
the phonon occupation number depending on the temperature and the transferred momentum.
Since thermal excitations do play the most important role in the decoherence process, we work
at room temperature (300 K) in order to check the real possibility of finding long coherent times
in a normal phonon environment [27]. The total volume of the samples is around 4 × 105 nm3.

Figures 3(a)–(c) show the relaxation times from equation (5a), and figures 4(a)–(c) the
times from equation (5b) as a function of the bias field. These figures allow us to compare
the orders of magnitude of the deformation and piezoelectric potential interactions. It is clear
that the times associated with the piezoelectric potential are at least one order of magnitude
larger that the times related to deformation potential. This is in agreement with those reported
in [4, 42]. However, there is a discrepancy with those reported in [43], where the calculations
were done basically in the small coupling regime. However, according to that result, when the
coupling increases, the piezoelectric interaction decreases more quickly than the deformation
one, and then our results could be expected in the high-coupling regime.

The curves are quite complicated, but some characteristics are clear. Around the points
where there is maximum delocalization (∼0.22 mV nm−1 for spherical dots, 0.125 and
1.25 mV nm−1 for lateral and vertical cylindrical dots respectively—see figure 2), the graphics
present their main features. Most of the crossings between decay times happen at those points,
because of the interchange of the symmetries of the wavefunctions just at these values. The
strongest oscillations are found also at those points where the double-dot character influences
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Figure 3. Electron–phonon decay times as a function of the bias field by deformation potential for
transitions between excited levels: E2, E3, E4 and E5 (the transition corresponding to each line
is indicated in the plots). (a) Case 1 (spherical double quantum dots), (b) case 2 (laterally coupled
double cylindrical quantum dots), and (c) case 3 (vertically coupled double cylindrical quantum
dots).

the interaction. Oscillatory behavior has also been predicted for multiple-dot systems with
infinite confinement in [6, 44].

In general, for most of the transitions the shortest decay times are obtained for laterally
coupled cylindrical dots, followed by stacked coupled cylindrical dots, and finally the longest
times are found for spherical dots. Then this suggests a relationship between the symmetry of
the system and the magnitude of the coupling. The more symmetrical the system, the smaller
is the electron–acoustic-phonon interaction. Similar behavior has been reported for elliptical
dots compared with spherical ones in single dots [45]. In these calculations, case 1 is the most
symmetric and case 2 the least. Case 3 is an intermediate level because it maintains the axial
symmetry. Compared with the reported values for bigger single dots of the same material, the
lifetimes found are between 2–3 orders of magnitude longer [46].

7
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Figure 4. Electron–phonon decay times as a function of the bias field by piezoelectric potential for
transitions between excited levels: E2, E3, E4 and E5 (the transition corresponding to each line
is indicated in the plots). (a) Case 1 (spherical double quantum dots), (b) case 2 (laterally coupled
double cylindrical quantum dots), and (c) case 3 (vertically coupled double cylindrical quantum
dots).

4. Electron–electron interaction

A confined electron may interact with conduction electrons in the matrix material, and with
other confined electrons. The scattering rates between confined electrons are expected to be
higher than those between confined and ‘free’ electrons, because the spatial confinement makes
the average separation shorter in the former case, as has been calculated for single quantum dots
in [12]. In our case we assume just one confined electron, so only interaction with surrounding
electrons is considered.

Again we use equation (2) to calculate the decay rates for this carrier–carrier interaction
with the Hamiltonian

8
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H e−e =
∑

�q

V�q
2�

∑
klmn

C†
kClC

†
mCn I �q

klmn ,

Vq = 4πe2

q2ε
,

I �q
klmn =

∫
All Space

�k(�r1)� ∗l (�r1)� ∗m (�r2)�n(�r2)e
i�q·(�r1−�r2) d�r1 d�r2

(6)

where ε is the dielectric constant associated to the screening within the material, � is the total
volume of the sample, C+

S (CS) is the fermionic creation (annihilation) operator in the state S,
and �S(�rn) is the wavefunction of the nth electron in the state S.

Inserting (6) in (2) and taking the average over all the directions, the final expression
we used to calculate the decay rate for the transition of the confined electron between the
state a (with energy Ea) and the state b (with energy Eb) by ‘free’-electron–confined-electron
interaction is

�e−e
ab = e4GT,Ea,Eb

2L2h̄π3(ab)2ε2
,

GT,Ea,Eb =
∫ ∞

V0

n fT,Ed Ĩa,b,c,d dEd ,

Ĩa,b,c,d =
∫

All Space

∫
All Space

C1C2�a(�r1)�
†
b(�r1)e

i(
√

2m∗(ab+Ed)/h̄)·�r2 ei(
√

2m∗ab/h̄)·�r2 d�r1 d�r2

(7)

where V0 is the confinement potential, n fT,Ed is the Fermi factor depending on the temperature
and the variable energy of integration, ab is the energy difference between the states a and
b, C1 and C2 are constants of normalization of the wavefunctions of the ‘free’ electrons, and
L is the average length of the sample. As with the electron–phonon interaction, we calculate
the lifetimes at room temperature and use a free-carrier concentration of 10−18 nm−3, typical of
intrinsic Alx Ga1−x As. Figures 5(a)–(c) show the decay times from equation (7) as a function
of the bias field for the three cases considered.

From figure 5 it can be observed that this electron–electron interaction qualitatively, and
for the most of the transitions, has an inverse behavior compared with the electron–phonon
one. Whereas for electron–phonon interactions case 1 shows the longest times and case 2 the
shortest ones, for electron–electron interactions case 1 has the shortest times and case 2 the
longest ones. As in section 3, this could be related with the symmetry of the systems, although
it is hard to conclude without more reference geometries. Again, besides the complexity of the
shapes, especially in the cylindrical cases, the crossings of the curves in the high delocalization
regions (F = 0.22 mV nm−1, F = 0.125 mV nm−1 and F = 1.25 for cases 1, 2 and 3
respectively) are remarkable. To the best of our knowledge, no calculations for this kind of
electron–electron interaction in double spherical or cylindrical quantum dots have yet been
reported. According to our calculations, the sensitivity of the relaxation times to the shape
of the dots is such that in spherical double dots the scattering by electron–electron interaction
dominates over the electron–phonon one, contrary to what is usually believed about electron–
phonon interaction being the main decoherence channel in quantum dots at finite temperature.
The orders of magnitude and the trend of shorter times for more symmetric geometries agree
with those reported by Nielsen for InGaAs quantum dots, where lens-shaped and cylindrical
dots can be compared [47].

5. Dynamic response

The occupation probability of energy levels and the coherence between states for the reduced
five-level system after the application of an ultra-fast electric field pulse can be obtained from

9
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Figure 5. Electron–electron decay times as a function of the bias field for transitions between
excited levels: E2, E3, E4 and E5 (the transition corresponding to each line is indicated in the
plots). (a) Case 1 (spherical double quantum dots), (b) case 2 (laterally coupled double cylindrical
quantum dots), and (c) case 3 (vertically coupled double cylindrical quantum dots).

the density matrix, whose evolution is given by the Liouville equation, which in the Lindblad
form with the Markovian approximation for the dissipation operator is [48]

ih̄
di j

dt
= [H U(t), ρ(t)]i j − ih̄�i jρi j , (8)

where ρi j is the i j density matrix component, H U
i j the matrix element of the Hamiltonian

including the exciting electric field, and the constants �i j are the relaxation rates calculated in
sections 3 and 4.

10
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The pulse we used is a Gaussian one, of the form

F(t) = F0e−(t/τ)2
cos(ω0t), τ � h̄

2 (E5 − E2)
, ω0 = (E5 + E2)

2h̄
, (9)

where τ has the purpose of making the pulse short enough to interact in the regime of the
uncertainty principle, and ω0 locates it at the central energy between the excited levels to be able
of achieving a coherent superposition of those levels. In our calculations we used τ = 22 fs,
whose energy uncertainty is enough to cover the excited levels of all the cases.

Solving the equation system (8) after the application of the pulse (9), we calculated the
total dipole moment (TDM) between excited states:

DT (t) =
∑
i, j

di jρ j i , i, j = 2, 3, 4, 5, (10)

where di j are the stationary dipole moments and ρi j are the coherent superpositions between
levels for i �= j , or the populations of levels for i = j . Figure 6 shows the TDM calculated for
the three studied cases in the HDR using three different amplitudes of pulses.

An oscillating dipole moment means coherent electromagnetic radiation, and figure 6
indicates that for cylindrically shaped dots, especially for those coupled vertically, the
observation of such emission is feasible since many cycles are completed before the inhibition
by scattering by phonons and conduction electrons [49]. The improvement of the amplitude of
the oscillation with the magnitude of the applied field, as would be expected, is also clear.

As we said before, if there were more than one electron confined in the dots, the electron–
electron interaction would be expected to be even orders of magnitude larger, which would
notably affect the possibility of having this emission according to what happened for the
spherical case. So occupation control becomes critical for eventual measurements.

Quantum beat emitters have been studied in three levels, where just one frequency is
obtained because only one transition is involved [50–52]. Here, due to the five levels that
are considered, up to six different frequencies are possible (three in the spherical case, because
two levels remain degenerated), although some of them are quickly inhibited.

6. Conclusions

One-electron dynamics in double spherical and cylindrical quantum dots has been studied in
this work. Eigenenergies and envelope functions were found for finite electronic confinement.
Relaxation times associated with decoherence processes by electron–phonon and electron–
electron calculations were evaluated at room temperature. By tuning with the external bias
field we found regions of high electronic delocalization where the relaxation rates are expected
to dominate over the pure dephasing rates [53].

Maxima and minima were observed in the decay times of the three systems studied [54],
with characteristic lifetimes longer than those in related systems like double quantum
wells [55, 56].

Feasible conditions for coherent emission were found in cylindrical dots, particularly when
they are vertically coupled (case 3), since this geometry helps the balance between scattering
by electron–electron and electron–phonon interactions. The spherical geometry was not found
to be suitable to observe coherent emission since the attenuation rate is bigger than the emission
frequencies. This is due mainly to the large electron–electron scattering rates associated with
this highly symmetric geometry.

The emission frequencies lie in a range from microwaves up to terahertz, which is useful
for the spectroscopy of close levels, as has already been applied using magnetic fields in

11
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Figure 6. (a) Electric field pulse (red, solid: F0 = 75 mV nm−1; blue, bold: F0 = 50 mV nm−1;
green, ultra-bold: F0 = 25 mV nm−1). Total dipole moment at the HDR for (b) double spherical
dots (F = 0.22 mV nm−1), (c) laterally coupled double cylindrical dots (F = 0.125 mV nm−1),
and (d) vertically coupled double cylindrical dots (F = 1.25 mV nm−1). The colours and line
widths for different values of F0 in (b), (c) and (d) are the same as in (a).

single quantum dots. This kind of coherent emission has been measured in double quantum
wells in [57], and now, according to our results, it should be expected in double-quantum-dot
systems.

12
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